May 2020: Conversational AI – Research Papers

By | May 10, 2020

I hope to keep this page up to date with the latest published papers that I found interesting on the topic of conversational AI, natural language processing (NLP), and knowledge extraction. This is only for the month of May, here’s the whole list on Conversational AI research papers.

Fact-based Dialogue Generation with Convergent and Divergent Decoding

Fact-based dialogue generation is a task of generating a human-like response based on both dialogue context and factual texts. Various methods were proposed to focus on generating informative words that contain facts effectively. However, previous works implicitly assume a topic to be kept on a dialogue and usually converse passively, therefore the systems have a difficulty to generate diverse responses that provide meaningful information proactively. This paper proposes an end-to-end fact-based dialogue system augmented with the ability of convergent and divergent thinking over both context and facts, which can converse about the current topic or introduce a new topic. Specifically, our model incorporates a novel convergent and divergent decoding that can generate informative and diverse responses considering not only given inputs (context and facts) but also inputs-related topics. Both automatic and human evaluation results on DSTC7 dataset show that our model significantly outperforms state-of-the-art baselines, indicating that our model can generate more appropriate, informative, and diverse responses.

Adversarial NLI: A New Benchmark for Natural Language Understanding

We introduce a new large-scale NLI benchmark dataset, collected via an iterative, adversarial human-and-model-in-the-loop procedure. We show that training models on this new dataset leads to state-of-the-art performance on a variety of popular NLI benchmarks, while posing a more difficult challenge with its new test set. Our analysis sheds light on the shortcomings of current state-of-the-art models, and shows that non-expert annotators are successful at finding their weaknesses. The data collection method can be applied in a never-ending learning scenario, becoming a moving target for NLU, rather than a static benchmark that will quickly saturate.

Graph-Embedding Empowered Entity Retrieval

In this research, we improve upon the current state of the art in entity retrieval by re-ranking the result list using graph embeddings. The paper shows that graph embeddings are useful for entity-oriented search tasks. We demonstrate empirically that encoding information from the knowledge graph into (graph) embeddings contributes to a higher increase in effectiveness of entity retrieval results than using plain word embeddings. We analyze the impact of the accuracy of the entity linker on the overall retrieval effectiveness. Our analysis further deploys the cluster hypothesis to explain the observed advantages of graph embeddings over the more widely used word embeddings, for user tasks involving ranking entities.

Efficient Dialogue State Tracking by Selectively Overwriting Memory

Recent works in dialogue state tracking (DST) focus on an open vocabulary-based setting to resolve scalability and generalization issues of the predefined ontology-based approaches. However, they are inefficient in that they predict the dialogue state at every turn from scratch. Here, we consider dialogue state as an explicit fixed-sized memory and propose a selectively overwriting mechanism for more efficient DST. This mechanism consists of two steps: (1) predicting state operation on each of the memory slots, and (2) overwriting the memory with new values, of which only a few are generated according to the predicted state operations. Our method decomposes DST into two sub-tasks and guides the decoder to focus only on one of the tasks, thus reducing the burden of the decoder. This enhances the effectiveness of training and DST performance. Our SOM-DST (Selectively Overwriting Memory for Dialogue State Tracking) model achieves state-of-the-art joint goal accuracy with 51.72% in MultiWOZ 2.0 and 53.01% in MultiWOZ 2.1 in an open vocabulary-based DST setting. In addition, we analyze the accuracy gaps between the current and the ground truth-given situations and suggest that it is a promising direction to improve state operation prediction to boost the DST performance.

An Imitation Game for Learning Semantic Parsers from User Interaction

Despite the widely successful applications, bootstrapping and fine-tuning semantic parsers are still a tedious process with challenges such as costly data annotation and privacy risks. In this paper, we suggest an alternative, human-in-the-loop methodology for learning semantic parsers directly from users. A semantic parser should be introspective of its uncertainties and prompt for user demonstration when uncertain. In doing so it also gets to imitate the user behavior and continue improving itself autonomously with the hope that eventually it may become as good as the user in interpreting their questions. To combat the sparsity of demonstration, we propose a novel annotation-efficient imitation learning algorithm, which iteratively collects new datasets by mixing demonstrated states and confident predictions and re-trains the semantic parser in a Dataset Aggregation fashion (Ross et al., 2011). We provide a theoretical analysis of its cost bound and also empirically demonstrate its promising performance on the text-to-SQL problem.

Birds have four legs?! NumerSense: Probing Numerical Commonsense Knowledge of Pre-trained Language Models

Recent works show that pre-trained masked language models, such as BERT, possess certain linguistic and commonsense knowledge. However, it remains to be seen what types of commonsense knowledge these models have access to. In this vein, we propose to study whether numerical commonsense knowledge — commonsense knowledge that provides an understanding of the numeric relation between entities — can be induced from pre-trained masked language models and to what extent is this access to knowledge robust against adversarial examples? To study this, we introduce a probing task with a diagnostic dataset, NumerSense, containing 3,145 masked-word-prediction probes. Surprisingly, our experiments and analysis reveal that: (1) BERT and its stronger variant RoBERTa perform poorly on our dataset prior to any fine-tuning; (2) fine-tuning with distant supervision does improve performance; (3) the best distantly supervised model still performs poorly when compared to humans (47.8% vs 96.3%).

SEEK: Segmented Embedding of Knowledge Graphs

In recent years, knowledge graph embedding becomes a pretty hot research topic of artificial intelligence and plays increasingly vital roles in various downstream applications, such as recommendation and question answering. However, existing methods for knowledge graph embedding can not make a proper trade-off between the model complexity and the model expressiveness, which makes them still far from satisfactory. To mitigate this problem, we propose a lightweight modeling framework that can achieve highly competitive relational expressiveness without increasing the model complexity. Our framework focuses on the design of scoring functions and highlights two critical characteristics: 1) facilitating sufficient feature interactions; 2) preserving both symmetry and antisymmetry properties of relations. It is noteworthy that owing to the general and elegant design of scoring functions, our framework can incorporate many famous existing methods as special cases. Moreover, extensive experiments on public benchmarks demonstrate the efficiency and effectiveness of our framework.

Predicting Performance for Natural Language Processing Tasks

Given the complexity of combinations of tasks, languages, and domains in natural language processing (NLP) research, it is computationally prohibitive to exhaustively test newly proposed models on each possible experimental setting. In this work, we attempt to explore the possibility of gaining plausible judgments of how well an NLP model can perform under an experimental setting, without actually training or testing the model. To do so, we build regression models to predict the evaluation score of an NLP experiment given the experimental settings as input. Experimenting on 9 different NLP tasks, we find that our predictors can produce meaningful predictions over unseen languages and different modeling architectures, outperforming reasonable baselines as well as human experts. Going further, we outline how our predictor can be used to find a small subset of representative experiments that should be run in order to obtain plausible predictions for all other experimental settings.

DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation

We present a large, tunable neural conversational response generation model, DialoGPT (dialogue generative pre-trained transformer). Trained on 147M conversation-like exchanges extracted from Reddit comment chains over a period spanning from 2005 through 2017, DialoGPT extends the Hugging Face PyTorch transformer to attain a performance close to human both in terms of automatic and human evaluation in single-turn dialogue settings. We show that conversational systems that leverage DialoGPT generate more relevant, contentful and context-consistent responses than strong baseline systems. The pre-trained model and training pipeline are publicly released to facilitate research into neural response generation and the development of more intelligent open-domain dialogue systems.

Self-supervised Knowledge Triplet Learning for Zero-shot Question Answering

The aim of all Question Answering (QA) systems is to be able to generalize to unseen questions. Most of the current methods rely on learning every possible scenario which is reliant on expensive data annotation. Moreover, such annotations can introduce unintended bias which makes systems focus more on the bias than the actual task. In this work, we propose Knowledge Triplet Learning, a self-supervised task over knowledge graphs. We propose methods of how to use such a model to perform zero-shot QA and our experiments show considerable improvements over large pre-trained generative models.

Cross-lingual Entity Alignment for Knowledge Graphs with Incidental Supervision from Free Text

Much research effort has been put to multilingual knowledge graph (KG) embedding methods to address the entity alignment task, which seeks to match entities in different languagespecific KGs that refer to the same real-world object. Such methods are often hindered by the insufficiency of seed alignment provided between KGs. Therefore, we propose a new model, JEANS , which jointly represents multilingual KGs and text corpora in a shared embedding scheme, and seeks to improve entity alignment with incidental supervision signals from text. JEANS first deploys an entity grounding process to combine each KG with the monolingual text corpus. Then, two learning processes are conducted: (i) an embedding learning process to encode the KG and text of each language in one embedding space, and (ii) a self-learning based alignment learning process to iteratively induce the correspondence of entities and that of lexemes between embeddings. Experiments on benchmark datasets show that JEANS leads to promising improvement on entity alignment with incidental supervision, and significantly outperforms state-of-the-art methods that solely rely on internal information of KGs.

Contextualized Sparse Representations for Real-Time Open-Domain Question Answering

Open-domain question answering can be formulated as a phrase retrieval problem, in which we can expect huge scalability and speed benefit but often suffer from low accuracy due to the limitation of existing phrase representation models. In this paper, we aim to improve the quality of each phrase embedding by augmenting it with a contextualized sparse representation (Sparc). Unlike previous sparse vectors that are term-frequency-based (e.g., tf-idf) or directly learned (only few thousand dimensions), we leverage rectified self-attention to indirectly learn sparse vectors in n-gram vocabulary space. By augmenting the previous phrase retrieval model (Seo et al., 2019) with Sparc, we show 4%+ improvement in CuratedTREC and SQuAD-Open. Our CuratedTREC score is even better than the best known retrieve & read model with at least 45x faster inference speed.

Unsupervised Domain Clusters in Pretrained Language Models

The notion of “in-domain data” in NLP is often over-simplistic and vague, as textual data varies in many nuanced linguistic aspects such as topic, style or level of formality. In addition, domain labels are many times unavailable, making it challenging to build domain-specific systems. We show that massive pre-trained language models implicitly learn sentence representations that cluster by domains without supervision — suggesting a simple data-driven definition of domains in textual data. We harness this property and propose domain data selection methods based on such models, which require only a small set of in-domain monolingual data. We evaluate our data selection methods for neural machine translation across five diverse domains, where they outperform an established approach as measured by both BLEU and by precision and recall of sentence selection with respect to an oracle.

 
0 Kudos
Don't
move!

Thoughts?