I hope to keep this page up to date with the latest published papers that I found interesting on the topic of conversational AI, natural language processing (NLP), and knowledge extraction.
May 2020
Fact-based Dialogue Generation with Convergent and Divergent Decoding
Fact-based dialogue generation is a task of generating a human-like response based on both dialogue context and factual texts. Various methods were proposed to focus on generating informative words that contain facts effectively. However, previous works implicitly assume a topic to be kept on a dialogue and usually converse passively, therefore the systems have a difficulty to generate diverse responses that provide meaningful information proactively. This paper proposes an end-to-end fact-based dialogue system augmented with the ability of convergent and divergent thinking over both context and facts, which can converse about the current topic or introduce a new topic. Specifically, our model incorporates a novel convergent and divergent decoding that can generate informative and diverse responses considering not only given inputs (context and facts) but also inputs-related topics. Both automatic and human evaluation results on DSTC7 dataset show that our model significantly outperforms state-of-the-art baselines, indicating that our model can generate more appropriate, informative, and diverse responses.
Adversarial NLI: A New Benchmark for Natural Language Understanding
We introduce a new large-scale NLI benchmark dataset, collected via an iterative, adversarial human-and-model-in-the-loop procedure. We show that training models on this new dataset leads to state-of-the-art performance on a variety of popular NLI benchmarks, while posing a more difficult challenge with its new test set. Our analysis sheds light on the shortcomings of current state-of-the-art models, and shows that non-expert annotators are successful at finding their weaknesses. The data collection method can be applied in a never-ending learning scenario, becoming a moving target for NLU, rather than a static benchmark that will quickly saturate.
Graph-Embedding Empowered Entity Retrieval
In this research, we improve upon the current state of the art in entity retrieval by re-ranking the result list using graph embeddings. The paper shows that graph embeddings are useful for entity-oriented search tasks. We demonstrate empirically that encoding information from the knowledge graph into (graph) embeddings contributes to a higher increase in effectiveness of entity retrieval results than using plain word embeddings. We analyze the impact of the accuracy of the entity linker on the overall retrieval effectiveness. Our analysis further deploys the cluster hypothesis to explain the observed advantages of graph embeddings over the more widely used word embeddings, for user tasks involving ranking entities.
Efficient Dialogue State Tracking by Selectively Overwriting Memory
Recent works in dialogue state tracking (DST) focus on an open vocabulary-based setting to resolve scalability and generalization issues of the predefined ontology-based approaches. However, they are inefficient in that they predict the dialogue state at every turn from scratch. Here, we consider dialogue state as an explicit fixed-sized memory and propose a selectively overwriting mechanism for more efficient DST. This mechanism consists of two steps: (1) predicting state operation on each of the memory slots, and (2) overwriting the memory with new values, of which only a few are generated according to the predicted state operations. Our method decomposes DST into two sub-tasks and guides the decoder to focus only on one of the tasks, thus reducing the burden of the decoder. This enhances the effectiveness of training and DST performance. Our SOM-DST (Selectively Overwriting Memory for Dialogue State Tracking) model achieves state-of-the-art joint goal accuracy with 51.72% in MultiWOZ 2.0 and 53.01% in MultiWOZ 2.1 in an open vocabulary-based DST setting. In addition, we analyze the accuracy gaps between the current and the ground truth-given situations and suggest that it is a promising direction to improve state operation prediction to boost the DST performance.
An Imitation Game for Learning Semantic Parsers from User Interaction
Despite the widely successful applications, bootstrapping and fine-tuning semantic parsers are still a tedious process with challenges such as costly data annotation and privacy risks. In this paper, we suggest an alternative, human-in-the-loop methodology for learning semantic parsers directly from users. A semantic parser should be introspective of its uncertainties and prompt for user demonstration when uncertain. In doing so it also gets to imitate the user behavior and continue improving itself autonomously with the hope that eventually it may become as good as the user in interpreting their questions. To combat the sparsity of demonstration, we propose a novel annotation-efficient imitation learning algorithm, which iteratively collects new datasets by mixing demonstrated states and confident predictions and re-trains the semantic parser in a Dataset Aggregation fashion (Ross et al., 2011). We provide a theoretical analysis of its cost bound and also empirically demonstrate its promising performance on the text-to-SQL problem.
Recent works show that pre-trained masked language models, such as BERT, possess certain linguistic and commonsense knowledge. However, it remains to be seen what types of commonsense knowledge these models have access to. In this vein, we propose to study whether numerical commonsense knowledge — commonsense knowledge that provides an understanding of the numeric relation between entities — can be induced from pre-trained masked language models and to what extent is this access to knowledge robust against adversarial examples? To study this, we introduce a probing task with a diagnostic dataset, NumerSense, containing 3,145 masked-word-prediction probes. Surprisingly, our experiments and analysis reveal that: (1) BERT and its stronger variant RoBERTa perform poorly on our dataset prior to any fine-tuning; (2) fine-tuning with distant supervision does improve performance; (3) the best distantly supervised model still performs poorly when compared to humans (47.8% vs 96.3%).
SEEK: Segmented Embedding of Knowledge Graphs
In recent years, knowledge graph embedding becomes a pretty hot research topic of artificial intelligence and plays increasingly vital roles in various downstream applications, such as recommendation and question answering. However, existing methods for knowledge graph embedding can not make a proper trade-off between the model complexity and the model expressiveness, which makes them still far from satisfactory. To mitigate this problem, we propose a lightweight modeling framework that can achieve highly competitive relational expressiveness without increasing the model complexity. Our framework focuses on the design of scoring functions and highlights two critical characteristics: 1) facilitating sufficient feature interactions; 2) preserving both symmetry and antisymmetry properties of relations. It is noteworthy that owing to the general and elegant design of scoring functions, our framework can incorporate many famous existing methods as special cases. Moreover, extensive experiments on public benchmarks demonstrate the efficiency and effectiveness of our framework.
Predicting Performance for Natural Language Processing Tasks
Given the complexity of combinations of tasks, languages, and domains in natural language processing (NLP) research, it is computationally prohibitive to exhaustively test newly proposed models on each possible experimental setting. In this work, we attempt to explore the possibility of gaining plausible judgments of how well an NLP model can perform under an experimental setting, without actually training or testing the model. To do so, we build regression models to predict the evaluation score of an NLP experiment given the experimental settings as input. Experimenting on 9 different NLP tasks, we find that our predictors can produce meaningful predictions over unseen languages and different modeling architectures, outperforming reasonable baselines as well as human experts. Going further, we outline how our predictor can be used to find a small subset of representative experiments that should be run in order to obtain plausible predictions for all other experimental settings.
DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation
We present a large, tunable neural conversational response generation model, DialoGPT (dialogue generative pre-trained transformer). Trained on 147M conversation-like exchanges extracted from Reddit comment chains over a period spanning from 2005 through 2017, DialoGPT extends the Hugging Face PyTorch transformer to attain a performance close to human both in terms of automatic and human evaluation in single-turn dialogue settings. We show that conversational systems that leverage DialoGPT generate more relevant, contentful and context-consistent responses than strong baseline systems. The pre-trained model and training pipeline are publicly released to facilitate research into neural response generation and the development of more intelligent open-domain dialogue systems.
Self-supervised Knowledge Triplet Learning for Zero-shot Question Answering
The aim of all Question Answering (QA) systems is to be able to generalize to unseen questions. Most of the current methods rely on learning every possible scenario which is reliant on expensive data annotation. Moreover, such annotations can introduce unintended bias which makes systems focus more on the bias than the actual task. In this work, we propose Knowledge Triplet Learning, a self-supervised task over knowledge graphs. We propose methods of how to use such a model to perform zero-shot QA and our experiments show considerable improvements over large pre-trained generative models.
Cross-lingual Entity Alignment for Knowledge Graphs with Incidental Supervision from Free Text
Much research effort has been put to multilingual knowledge graph (KG) embedding methods to address the entity alignment task, which seeks to match entities in different languagespecific KGs that refer to the same real-world object. Such methods are often hindered by the insufficiency of seed alignment provided between KGs. Therefore, we propose a new model, JEANS , which jointly represents multilingual KGs and text corpora in a shared embedding scheme, and seeks to improve entity alignment with incidental supervision signals from text. JEANS first deploys an entity grounding process to combine each KG with the monolingual text corpus. Then, two learning processes are conducted: (i) an embedding learning process to encode the KG and text of each language in one embedding space, and (ii) a self-learning based alignment learning process to iteratively induce the correspondence of entities and that of lexemes between embeddings. Experiments on benchmark datasets show that JEANS leads to promising improvement on entity alignment with incidental supervision, and significantly outperforms state-of-the-art methods that solely rely on internal information of KGs.
Contextualized Sparse Representations for Real-Time Open-Domain Question Answering
Open-domain question answering can be formulated as a phrase retrieval problem, in which we can expect huge scalability and speed benefit but often suffer from low accuracy due to the limitation of existing phrase representation models. In this paper, we aim to improve the quality of each phrase embedding by augmenting it with a contextualized sparse representation (Sparc). Unlike previous sparse vectors that are term-frequency-based (e.g., tf-idf) or directly learned (only few thousand dimensions), we leverage rectified self-attention to indirectly learn sparse vectors in n-gram vocabulary space. By augmenting the previous phrase retrieval model (Seo et al., 2019) with Sparc, we show 4%+ improvement in CuratedTREC and SQuAD-Open. Our CuratedTREC score is even better than the best known retrieve & read model with at least 45x faster inference speed.
Unsupervised Domain Clusters in Pretrained Language Models
The notion of “in-domain data” in NLP is often over-simplistic and vague, as textual data varies in many nuanced linguistic aspects such as topic, style or level of formality. In addition, domain labels are many times unavailable, making it challenging to build domain-specific systems. We show that massive pre-trained language models implicitly learn sentence representations that cluster by domains without supervision — suggesting a simple data-driven definition of domains in textual data. We harness this property and propose domain data selection methods based on such models, which require only a small set of in-domain monolingual data. We evaluate our data selection methods for neural machine translation across five diverse domains, where they outperform an established approach as measured by both BLEU and by precision and recall of sentence selection with respect to an oracle.
Apr 2020
Longformer: The Long-Document Transformer
Transformer-based models are unable to process long sequences due to their self-attention operation, which scales quadratically with the sequence length. To address this limitation, we introduce the Longformer with an attention mechanism that scales linearly with sequence length, making it easy to process documents of thousands of tokens or longer. Longformer’s attention mechanism is a drop-in replacement for the standard self-attention and combines a local windowed attention with a task motivated global attention. Following prior work on long-sequence transformers, we evaluate Longformer on character-level language modeling and achieve state-of-the-art results on text8 and enwik8. In contrast to most prior work, we also pretrain Longformer and finetune it on a variety of downstream tasks. Our pretrained Longformer consistently outperforms RoBERTa on long document tasks and sets new state-of-the-art results on WikiHop and TriviaQA.
Named Entity Recognition without Labelled Data: A Weak Supervision Approach
Named Entity Recognition (NER) performance often degrades rapidly when applied to target domains that differ from the texts observed during training. When in-domain labelled data is available, transfer learning techniques can be used to adapt existing NER models to the target domain. But what should one do when there is no hand-labelled data for the target domain? This paper presents a simple but powerful approach to learn NER models in the absence of labelled data through weak supervision. The approach relies on a broad spectrum of labelling functions to automatically annotate texts from the target domain. These annotations are then merged together using a hidden Markov model which captures the varying accuracies and confusions of the labelling functions. A sequence labelling model can finally be trained on the basis of this unified annotation. We evaluate the approach on two English datasets (CoNLL 2003 and news articles from Reuters and Bloomberg) and demonstrate an improvement of about 7 percentage points in entity-level F1 scores compared to an out-of-domain neural NER model.
ToD-BERT: Pre-trained Natural Language Understanding for Task-Oriented Dialogues
The use of pre-trained language models has emerged as a promising direction for improving dialogue systems. However, the underlying difference of linguistic patterns between conversational data and general text makes the existing pre-trained language models not as effective as they have been shown to be. Recently, there are some pre-training approaches based on open-domain dialogues, leveraging large-scale social media data such as Twitter or Reddit. Pre-training for task-oriented dialogues, on the other hand, is rarely discussed because of the long-standing and crucial data scarcity problem. In this work, we combine nine English-based, human-human, multi-turn and publicly available task-oriented dialogue datasets to conduct language model pre-training. The experimental results show that our pre-trained task-oriented dialogue BERT (ToD-BERT) surpasses BERT and other strong baselines in four downstream task-oriented dialogue applications, including intention detection, dialogue state tracking, dialogue act prediction, and response selection. Moreover, in the simulated limited data experiments, we show that ToD-BERT has stronger few-shot capacity that can mitigate the data scarcity problem in task-oriented dialogues.
Maintaining a consistent personality in conversations is quite natural for human beings, but is still a non-trivial task for machines. The persona-based dialogue generation task is thus introduced to tackle the personality-inconsistent problem by incorporating explicit persona text into dialogue generation models. Despite the success of existing persona-based models on generating human-like responses, their one-stage decoding framework can hardly avoid the generation of inconsistent persona words. In this work, we introduce a three-stage framework that employs a generate-delete-rewrite mechanism to delete inconsistent words from a generated response prototype and further rewrite it to a personality-consistent one. We carry out evaluations by both human and automatic metrics. Experiments on the Persona-Chat dataset show that our approach achieves good performance.
Feb 2020
Open-domain retrieval-based dialogue systems require a considerable amount of training data to learn their parameters. However, in practice, the negative samples of training data are usually selected from an unannotated conversation data set at random. The generated training data is likely to contain noise and affect the performance of the response selection models. To address this difficulty, we consider utilizing the underlying correlation in the data resource itself to derive different kinds of supervision signals and reduce the influence of noisy data. More specially, we consider a main-complementary task pair. The main task (\ie our focus) selects the correct response given the last utterance and context, and the complementary task selects the last utterance given the response and context. The key point is that the output of the complementary task is used to set instance weights for the main task. We conduct extensive experiments in two public datasets and obtain significant improvement in both datasets. We also investigate the variant of our approach in multiple aspects, and the results have verified the effectiveness of our approach.
Sequential Latent Knowledge Selection for Knowledge-Grounded Dialogue
Knowledge-grounded dialogue is a task of generating an informative response based on both discourse context and external knowledge. As we focus on better modeling the knowledge selection in the multi-turn knowledge-grounded dialogue, we propose a sequential latent variable model as the first approach to this matter. The model named sequential knowledge transformer (SKT) can keep track of the prior and posterior distribution over knowledge; as a result, it can not only reduce the ambiguity caused from the diversity in knowledge selection of conversation but also better leverage the response information for proper choice of knowledge. Our experimental results show that the proposed model improves the knowledge selection accuracy and subsequently the performance of utterance generation. We achieve the new state-of-the-art performance on Wizard of Wikipedia (Dinan et al., 2019) as one of the most large-scale and challenging benchmarks. We further validate the effectiveness of our model over existing conversation methods in another knowledge-based dialogue Holl-E dataset (Moghe et al., 2018).
ConvLab-2: An Open-Source Toolkit for Building, Evaluating, and Diagnosing Dialogue Systems
We present ConvLab-2, an open-source toolkit that enables researchers to build task-oriented dialogue systems with state-of-the-art models, perform an end-to-end evaluation, and diagnose the weakness of systems. As the successor of ConvLab (Lee et al., 2019b), ConvLab-2 inherits ConvLab’s framework but integrates more powerful dialogue models and supports more datasets. Besides, we have developed an analysis tool and an interactive tool to assist researchers in diagnosing dialogue systems. The analysis tool presents rich statistics and summarizes common mistakes from simulated dialogues, which facilitates error analysis and system improvement. The interactive tool provides a user interface that allows developers to diagnose an assembled dialogue system by interacting with the system and modifying the output of each system component. Code.
Dec 2019
Neural Module Networks for Reasoning over Text
Answering compositional questions that require multiple steps of reasoning against text is challenging, especially when they involve discrete, symbolic operations. Neural module networks (NMNs) learn to parse such questions as executable programs composed of learnable modules, performing well on synthetic visual QA domains. However, we find that it is challenging to learn these models for non-synthetic questions on open-domain text, where a model needs to deal with the diversity of natural language and perform a broader range of reasoning. We extend NMNs by: (a) introducing modules that reason over a paragraph of text, performing symbolic reasoning (such as arithmetic, sorting, counting) over numbers and dates in a probabilistic and differentiable manner; and (b) proposing an unsupervised auxiliary loss to help extract arguments associated with the events in text. Additionally, we show that a limited amount of heuristically-obtained question program and intermediate module output supervision provides sufficient inductive bias for accurate learning. Our proposed model significantly outperforms state-of-the-art models on a subset of the DROP dataset that poses a variety of reasoning challenges that are covered by our modules.
Benchmarking Zero-shot Text Classification: Datasets, Evaluation and Entailment Approach
Zero-shot text classification (0Shot-TC) is a challenging NLU problem to which little attention has been paid by the research community. 0Shot-TC aims to associate an appropriate label with a piece of text, irrespective of the text domain and the aspect (e.g., topic, emotion, event, etc.) described by the label. And there are only a few articles studying 0Shot-TC, all focusing only on topical categorization which, we argue, is just the tip of the iceberg in 0Shot-TC. In addition, the chaotic experiments in literature make no uniform comparison, which blurs the progress.
Cross-Lingual Ability of Multilingual BERT: An Empirical Study
Recent work has exhibited the surprising cross-lingual abilities of multilingual BERT (M-BERT) — surprising since it is trained without any cross-lingual objective and with no aligned data. In this work, we provide a comprehensive study of the contribution of different components in M-BERT to its cross-lingual ability. We study the impact of linguistic properties of the languages, the architecture of the model, and the learning objectives. The experimental study is done in the context of three typologically different languages — Spanish, Hindi, and Russian — and using two conceptually different NLP tasks, textual entailment and named entity recognition. Among our key conclusions is the fact that the lexical overlap between languages plays a negligible role in the cross-lingual success, while the depth of the network is an integral part of it.
Libri-Light: A Benchmark for ASR with Limited or No Supervision
We introduce a new collection of spoken English audio suitable for training speech recognition systems under limited or no supervision. It is derived from open-source audio books from the LibriVox project. It contains over 60K hours of audio, which is, to our knowledge, the largest freely-available corpus of speech. The audio has been segmented using voice activity detection and is tagged with SNR, speaker ID and genre descriptions. Additionally, we provide baseline systems and evaluation metrics working under three settings: (1) the zero resource/unsupervised setting (ABX), (2) the semi-supervised setting (PER, CER) and (3) the distant supervision setting (WER). Settings (2) and (3) use limited textual resources (10 minutes to 10 hours) aligned with the speech. Setting (3) uses large amounts of unaligned text. They are evaluated on the standard LibriSpeech dev and test sets for comparison with the supervised state-of-the-art.
Extending Machine Language Models toward Human-Level Language Understanding
Language is central to human intelligence. We review recent breakthroughs in machine language processing and consider what remains to be achieved. Recent approaches rely on domain general principles of learning and representation captured in artificial neural networks. Most current models, however, focus too closely on language itself. In humans, language is part of a larger system for acquiring, representing, and communicating about objects and situations in the physical and social world, and future machine language models should emulate such a system. We describe existing machine models linking language to concrete situations, and point toward extensions to address more abstract cases. Human language processing exploits complementary learning systems, including a deep neural network-like learning system that learns gradually as machine systems do, as well as a fast-learning system that supports learning new information quickly. Adding such a system to machine language models will be an important further step toward truly human-like language understanding.
Automatic dialogue evaluation plays a crucial role in open-domain dialogue research. Previous works train neural networks with limited annotation for conducting automatic dialogue evaluation, which would naturally affect the evaluation fairness as dialogue systems close to the scope of training corpus would have more preference than the other ones. In this paper, we study alleviating this problem from the perspective of continual learning: given an existing neural dialogue evaluator and the next system to be evaluated, we fine-tune the learned neural evaluator by selectively forgetting/updating its parameters, to jointly fit dialogue systems have been and will be evaluated. Our motivation is to seek for a lifelong and low-cost automatic evaluation for dialogue systems, rather than to reconstruct the evaluator over and over again. Experimental results show that our continual evaluator achieves comparable performance with reconstructing new evaluators, while requires significantly lower resources.
Nov 2019
Learning to Retrieve Reasoning Paths over Wikipedia Graph for Question Answering
Answering questions that require multi-hop reasoning at web-scale necessitates retrieving multiple evidence documents, one of which often has little lexical or semantic relationship to the question. This paper introduces a new graph-based recurrent retrieval approach that learns to retrieve reasoning paths over the Wikipedia graph to answer multi-hop open-domain questions. Our retriever model trains a recurrent neural network that learns to sequentially retrieve evidence paragraphs in the reasoning path by conditioning on the previously retrieved documents. Our reader model ranks the reasoning paths and extracts the answer span included in the best reasoning path. Experimental results show state-of-the-art results in three open-domain QA datasets, showcasing the effectiveness and robustness of our method. Notably, our method achieves significant improvement in HotpotQA, outperforming the previous best model by more than 14 points.
Sept 2019
End-to-end Named Entity Recognition and Relation Extraction using Pre-trained Language Models
Named entity recognition (NER) and relation extraction (RE) are two important tasks in information extraction and retrieval (IE \& IR). Recent work has demonstrated that it is beneficial to learn these tasks jointly, which avoids the propagation of error inherent in pipeline-based systems and improves performance. However, state-of-the-art joint models typically rely on external natural language processing (NLP) tools, such as dependency parsers, limiting their usefulness to domains (e.g. news) where those tools perform well. The few neural, end-to-end models that have been proposed are trained almost completely from scratch. In this paper, we propose a neural, end-to-end model for jointly extracting entities and their relations which does not rely on external NLP tools and which integrates a large, pre-trained language model. Because the bulk of our model’s parameters are pre-trained and we eschew recurrence for self-attention, our model is fast to train. On 5 datasets across 3 domains, our model matches or exceeds state-of-the-art performance, sometimes by a large margin.
July 2019
Towards Universal Dialogue Act Tagging for Task-Oriented Dialogues
Machine learning approaches for building task-oriented dialogue systems require large conversational datasets with labels to train on. We are interested in building task-oriented dialogue systems from human-human conversations, which may be available in ample amounts in existing customer care center logs or can be collected from crowd workers. Annotating these datasets can be prohibitively expensive. Recently multiple annotated task-oriented human-machine dialogue datasets have been released, however their annotation schema varies across different collections, even for well-defined categories such as dialogue acts (DAs). We propose a Universal DA schema for task-oriented dialogues and align existing annotated datasets with our schema. Our aim is to train a Universal DA tagger (U-DAT) for task-oriented dialogues and use it for tagging human-human conversations. We investigate multiple datasets, propose manual and automated approaches for aligning the different schema, and present results on a target corpus of human-human dialogues. In unsupervised learning experiments we achieve an F1 score of 54.1% on system turns in human-human dialogues. In a semi-supervised setup, the F1 score increases to 57.7% which would otherwise require at least 1.7K manually annotated turns. For new domains, we show further improvements when unlabeled or labeled target domain data is available.
May 2019
Transferable Multi-Domain State Generator for Task-Oriented Dialogue Systems
Over-dependence on domain ontology and lack of knowledge sharing across domains are two practical and yet less studied problems of dialogue state tracking. Existing approaches generally fall short in tracking unknown slot values during inference and often have difficulties in adapting to new domains. In this paper, we propose a Transferable Dialogue State Generator (TRADE) that generates dialogue states from utterances using a copy mechanism, facilitating knowledge transfer when predicting (domain, slot, value) triplets not encountered during training. Our model is composed of an utterance encoder, a slot gate, and a state generator, which are shared across domains. Empirical results demonstrate that TRADE achieves state-of-the-art joint goal accuracy of 48.62% for the five domains of MultiWOZ, a human-human dialogue dataset. In addition, we show its transferring ability by simulating zero-shot and few-shot dialogue state tracking for unseen domains. TRADE achieves 60.58% joint goal accuracy in one of the zero-shot domains, and is able to adapt to few-shot cases without forgetting already trained domains. Code.
April 2019
Better Automatic Evaluation of Open-Domain Dialogue Systems with Contextualized Embeddings
Despite advances in open-domain dialogue systems, automatic evaluation of such systems is still a challenging problem. Traditional reference-based metrics such as BLEU are ineffective because there could be many valid responses for a given context that share no common words with reference responses. A recent work proposed Referenced metric and Unreferenced metric Blended Evaluation Routine (RUBER) to combine a learning-based metric, which predicts relatedness between a generated response and a given query, with reference-based metric; it showed high correlation with human judgments. In this paper, we explore using contextualized word embeddings to compute more accurate relatedness scores, thus better evaluation metrics. Experiments show that our evaluation metrics outperform RUBER, which is trained on static embeddings.
March 2019
Privacy-preserving Active Learning on Sensitive Data for User Intent Classification
Active learning holds promise of significantly reducing data annotation costs while maintaining reasonable model performance. However, it requires sending data to annotators for labeling. This presents a possible privacy leak when the training set includes sensitive user data. In this paper, we describe an approach for carrying out privacy preserving active learning with quantifiable guarantees. We evaluate our approach by showing the tradeoff between privacy, utility and annotation budget on a binary classification task in a active learning setting.
Earlier research papers
RUBER: An Unsupervised Method for Automatic Evaluation of Open-Domain Dialog Systems
Open-domain human-computer conversation has been attracting increasing attention over the past few years. However, there does not exist a standard automatic evaluation metric for open-domain dialog systems; researchers usually resort to human annotation for model evaluation, which is time- and labor-intensive. In this paper, we propose RUBER, a Referenced metric and Unreferenced metric Blended Evaluation Routine, which evaluates a reply by taking into consideration both a groundtruth reply and a query (previous user-issued utterance). Our metric is learnable, but its training does not require labels of human satisfaction. Hence, RUBER is flexible and extensible to different datasets and languages. Experiments on both retrieval and generative dialog systems show that RUBER has a high correlation with human annotation.
Pingback: May 2020: Conversational AI – Research Papers – Ahmet Gyger's web log